We present ab initio calculations of the excited state properties of liquid water in the framework of many-body Green's function formalism. Snapshots taken from molecular dynamics simulations are used as input geometries to calculate electronic and optical spectra, and the results are averaged over the different configurations. The optical absorption spectra with the inclusion of excitonic effects are calculated by solving the Bethe-Salpeter equation. The insensitivity of screening effects to a particular configuration make these calculations feasible. The resulting spectra, which are strongly modified by many-body effects, are in good agreement with experiments.

Ab initio calculation of optical spectra of liquids: Many-body effects in the electronic excitations of water

2006

Abstract

We present ab initio calculations of the excited state properties of liquid water in the framework of many-body Green's function formalism. Snapshots taken from molecular dynamics simulations are used as input geometries to calculate electronic and optical spectra, and the results are averaged over the different configurations. The optical absorption spectra with the inclusion of excitonic effects are calculated by solving the Bethe-Salpeter equation. The insensitivity of screening effects to a particular configuration make these calculations feasible. The resulting spectra, which are strongly modified by many-body effects, are in good agreement with experiments.
2006
INFM
DENSITY-FUNCTIONAL THEORY
VACUUM ULTRAVIOLET
GREENS-FUNCTION
1ST PRINCIPLES
TEMPERATURE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/169050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact