We study vortical states in a Bose-Einstein condensate (BEC) filling a cigar-shaped trap. An effective one-dimensional (1D) nonpolynomial Schroedinger equation (NPSE) is derived in this setting, for the models with both repulsive and attractive inter-atomic interactions. Analytical formulas for the density profiles are obtained from the NPSE in the case of self-repulsion within the Thomas-Fermi approximation, and in the case of the self-attraction as exact solutions (bright solitons). A crucially important ingredient of the analysis is the comparison of these predictions with direct numerical solutions for the vortex states in the underlying 3D Gross-Pitaevskii equation (GPE). The comparison demonstrates that the NPSE provides for a very accurate approximation, in all the cases, including the prediction of the stability of the bright solitons and collapse threshold for them. In addition to the straight cigar-shaped trap, we also consider a torus-shaped configuration. In that case, we find a threshold for the transition from the axially uniform state, with the transverse intrinsic vorticity, to a symmetry-breaking pattern, due to the instability in the self-attractive BEC filling the circular trap.Note
Matter-wave vortices in cigar-shaped and toroidal waveguides
Salasnich L;Toigo F
2007
Abstract
We study vortical states in a Bose-Einstein condensate (BEC) filling a cigar-shaped trap. An effective one-dimensional (1D) nonpolynomial Schroedinger equation (NPSE) is derived in this setting, for the models with both repulsive and attractive inter-atomic interactions. Analytical formulas for the density profiles are obtained from the NPSE in the case of self-repulsion within the Thomas-Fermi approximation, and in the case of the self-attraction as exact solutions (bright solitons). A crucially important ingredient of the analysis is the comparison of these predictions with direct numerical solutions for the vortex states in the underlying 3D Gross-Pitaevskii equation (GPE). The comparison demonstrates that the NPSE provides for a very accurate approximation, in all the cases, including the prediction of the stability of the bright solitons and collapse threshold for them. In addition to the straight cigar-shaped trap, we also consider a torus-shaped configuration. In that case, we find a threshold for the transition from the axially uniform state, with the transverse intrinsic vorticity, to a symmetry-breaking pattern, due to the instability in the self-attractive BEC filling the circular trap.NoteFile | Dimensione | Formato | |
---|---|---|---|
prod_176468-doc_6055.pdf
solo utenti autorizzati
Descrizione: Matter-wave vortices in cigar-shaped and toroidal waveguides
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
166.9 kB
Formato
Adobe PDF
|
166.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.