Flavodiiron proteins (FDPs) are enzymes identified in prokaryotes and a few pathogenic protozoa, which protect microorganisms by reducing O2 to H2O and/or NO to N2O. Unlike most prokaryotic FDPs, the protozoan enzymes from the human pathogens Giardia intestinalis and Trichomonas vaginalis are selective towards O2. UV/vis and EPR spectroscopy showed that, differently from the NO-consuming bacterial FDPs, the Giardia FDP contains an FMN with reduction potentials for the formation of the single and the two-electron reduced forms very close to each other (E1 = 66 ± 15 mV and E2 = 83 ± 15 mV), a condition favoring destabilization of the semiquinone radical. Giardia FDP contains also a non-heme diiron site with significantly up-shifted reduction potentials (E1 = +163 ± 20 mV and E2 = +2 ± 20 mV). These properties are common to the Trichomonas hydrogenosomal FDP, and likely reflect yet undetermined subtle structural differences in the protozoan FDPs, accounting for their marked O2 specificity.

Redox properties of the oxygen-detoxifying flavodiiron protein from the human parasite Giardia intestinalis

2009

Abstract

Flavodiiron proteins (FDPs) are enzymes identified in prokaryotes and a few pathogenic protozoa, which protect microorganisms by reducing O2 to H2O and/or NO to N2O. Unlike most prokaryotic FDPs, the protozoan enzymes from the human pathogens Giardia intestinalis and Trichomonas vaginalis are selective towards O2. UV/vis and EPR spectroscopy showed that, differently from the NO-consuming bacterial FDPs, the Giardia FDP contains an FMN with reduction potentials for the formation of the single and the two-electron reduced forms very close to each other (E1 = 66 ± 15 mV and E2 = 83 ± 15 mV), a condition favoring destabilization of the semiquinone radical. Giardia FDP contains also a non-heme diiron site with significantly up-shifted reduction potentials (E1 = +163 ± 20 mV and E2 = +2 ± 20 mV). These properties are common to the Trichomonas hydrogenosomal FDP, and likely reflect yet undetermined subtle structural differences in the protozoan FDPs, accounting for their marked O2 specificity.
2009
Istituto di Biologia e Patologia Molecolari - IBPM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/169304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 39
social impact