A new iterative method to find the root of a nonlinear scalar function f is proposed. The method is based on a suitable Taylor polynomial model of order n around the current point xk and involves at each iteration the solution of a linear system of dimension n. It is shown that the coefficient matrix of the linear system is nonsingular if and only if the first derivative of f at xk is not null. Moreover, it is proved that the method is locally convergent with order of convergence at least n + 1. Finally, an easily implementable scheme is provided and some numerical results are reported.

A higher order method for the solution of a nonlinear scalar equation

Palumbo P;Sciandrone M
2006

Abstract

A new iterative method to find the root of a nonlinear scalar function f is proposed. The method is based on a suitable Taylor polynomial model of order n around the current point xk and involves at each iteration the solution of a linear system of dimension n. It is shown that the coefficient matrix of the linear system is nonsingular if and only if the first derivative of f at xk is not null. Moreover, it is proved that the method is locally convergent with order of convergence at least n + 1. Finally, an easily implementable scheme is provided and some numerical results are reported.
2006
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Root-finding algorithms
Newton method
higher-order methods
order of convergence.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/169477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 7
social impact