The synthesis and a combined spectroscopic and density functional theoretical characterization of a 3?,4?- ethylenedioxy-5,5??-bis(dicyanomethylene)-5,5??-dihydro-2,2?:5?,2??-terthiophene analogue of 7,7,8,8-tetracyanoquinodimethane (TCNQ) are presented. Electrochemical data show that this novel trimer can be both reversibly reduced and oxidized at relatively low potentials. Quantum-chemical calculations show that the compound exhibits a quinoidal structure in its ground electronic state and that a certain degree of intramolecular charge transfer takes place from the central terthienyl moiety toward both dC(CN)2 end-caps. Therefore, the amphoteric redox behavior of this novel material can be related to the coexistence of an electron-impoverished terthienyl core endowed by two electron-enriched dC(CN)2 substituents. The UV-vis spectrum is dominated by the appearance of a strong absorption near 660 nm, attributable to the highest occupied molecular orbital (HOMO) f lowest unoccupied molecular orbital (LUMO) ?-?* electronic transition of the terthienyl spine on the basis of time-dependent density functional theory (DFT) computations. The DFT calculations performed on the minimum-energy molecular geometry about the equilibrium atomic charge distribution, topologies, and energies of the frontier orbitals around the gap and about the Raman-active vibrations associated with the strongest Raman features are also consistent with a rather effective ?-electron conjugation and the partial degree of intramolecular charge transfer mentioned above. Our study reveals this novel heteroquinoid trimer could act as a promising candidate in organic field-effect transistor (OFET) applications.

Synthesis and characterization of a novel terthiophene-based quinodimethane bearing a 3,4-ethylenedioxythiophene central unit

Berlin A;Zotti G;
2005

Abstract

The synthesis and a combined spectroscopic and density functional theoretical characterization of a 3?,4?- ethylenedioxy-5,5??-bis(dicyanomethylene)-5,5??-dihydro-2,2?:5?,2??-terthiophene analogue of 7,7,8,8-tetracyanoquinodimethane (TCNQ) are presented. Electrochemical data show that this novel trimer can be both reversibly reduced and oxidized at relatively low potentials. Quantum-chemical calculations show that the compound exhibits a quinoidal structure in its ground electronic state and that a certain degree of intramolecular charge transfer takes place from the central terthienyl moiety toward both dC(CN)2 end-caps. Therefore, the amphoteric redox behavior of this novel material can be related to the coexistence of an electron-impoverished terthienyl core endowed by two electron-enriched dC(CN)2 substituents. The UV-vis spectrum is dominated by the appearance of a strong absorption near 660 nm, attributable to the highest occupied molecular orbital (HOMO) f lowest unoccupied molecular orbital (LUMO) ?-?* electronic transition of the terthienyl spine on the basis of time-dependent density functional theory (DFT) computations. The DFT calculations performed on the minimum-energy molecular geometry about the equilibrium atomic charge distribution, topologies, and energies of the frontier orbitals around the gap and about the Raman-active vibrations associated with the strongest Raman features are also consistent with a rather effective ?-electron conjugation and the partial degree of intramolecular charge transfer mentioned above. Our study reveals this novel heteroquinoid trimer could act as a promising candidate in organic field-effect transistor (OFET) applications.
2005
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/169594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact