New unsymmetrical [N2O2] tetradentate Schiff base complexes of Ni(II), Cu(II), Zn(II), and VO(II) were synthesized by template condensation of the tetradentate precursor 1-phenylbutane-1,3-dione mono-S-methylisothiosemicarbazone with o-hydroxybenzaldehyde or its 5-phenylazo derivative. They were characterized by elemental analysis, IR, UV-vis, electron spin resonance, and NMR spectroscopy, mass spectrometry, and magnetic measurements. The crystal structures of five of them have been determined by X-ray diffraction using, in some cases, synchrotron radiation. These compounds are characterized by a large thermal stability; their decomposition temperatures range from 240 up to 310 °C. Complexes with the phenylazo substituent were found to possess a large second-order nonlinear optical (NLO) response, as determined both by measurements of solution-phase direct current electricfield- induced second harmonic generation and by theoretical time-dependent density functional theory (TDDFT) calculations. The molecular hyperpolarizability was found to decrease in the order Zn(II) > Cu(II) > Ni(II) _ VO(II). The active role of the metal in determining the NLO properties of the complexes was shown through an analysis of their UV-vis spectra, which revealed the presence of metal-to-ligand (in closed-shell complexes) and ligandto- metal (in open-shell complexes) charge-transfer bands together with intra-ligand charge-transfer transitions. Assignment of the bands was based on the analysis of the TDDFT computed spectra.
Structural, spectral, electric-field-induced second harmonic, and theoretical study of Ni(II), Cu(II), Zn(II) and VO(II) complexes with [N2O2] unsymmetrical Schiff bases of S-Methylisothiosemicarbazide derivatives
Forni A;Zecchin S;Quici S;
2007
Abstract
New unsymmetrical [N2O2] tetradentate Schiff base complexes of Ni(II), Cu(II), Zn(II), and VO(II) were synthesized by template condensation of the tetradentate precursor 1-phenylbutane-1,3-dione mono-S-methylisothiosemicarbazone with o-hydroxybenzaldehyde or its 5-phenylazo derivative. They were characterized by elemental analysis, IR, UV-vis, electron spin resonance, and NMR spectroscopy, mass spectrometry, and magnetic measurements. The crystal structures of five of them have been determined by X-ray diffraction using, in some cases, synchrotron radiation. These compounds are characterized by a large thermal stability; their decomposition temperatures range from 240 up to 310 °C. Complexes with the phenylazo substituent were found to possess a large second-order nonlinear optical (NLO) response, as determined both by measurements of solution-phase direct current electricfield- induced second harmonic generation and by theoretical time-dependent density functional theory (TDDFT) calculations. The molecular hyperpolarizability was found to decrease in the order Zn(II) > Cu(II) > Ni(II) _ VO(II). The active role of the metal in determining the NLO properties of the complexes was shown through an analysis of their UV-vis spectra, which revealed the presence of metal-to-ligand (in closed-shell complexes) and ligandto- metal (in open-shell complexes) charge-transfer bands together with intra-ligand charge-transfer transitions. Assignment of the bands was based on the analysis of the TDDFT computed spectra.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_169924-doc_19681.pdf
solo utenti autorizzati
Descrizione: Inorg. Chem. 46, 884-895, 2007
Dimensione
211.7 kB
Formato
Adobe PDF
|
211.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


