The existence of systematic variations of isobaric fragility in different supercooled Lennard-Jones binary mixtures is revealed by molecular dynamics simulations. The connection between fragility and local structures in the bulk is analyzed by means of a Voronoi construction. It is found that clusters of particles belonging to locally preferred structures form slow, long-lived domains, whose spatial extension increases with decreasing temperature. As a general rule, a more rapid growth, upon supercooling, of such domains is associated with a more pronounced super-Arrhenius behavior, and hence to a larger fragility. (C) 2007 American Institute of Physics.
Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures
Pastore G
2007
Abstract
The existence of systematic variations of isobaric fragility in different supercooled Lennard-Jones binary mixtures is revealed by molecular dynamics simulations. The connection between fragility and local structures in the bulk is analyzed by means of a Voronoi construction. It is found that clusters of particles belonging to locally preferred structures form slow, long-lived domains, whose spatial extension increases with decreasing temperature. As a general rule, a more rapid growth, upon supercooling, of such domains is associated with a more pronounced super-Arrhenius behavior, and hence to a larger fragility. (C) 2007 American Institute of Physics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.