We study the optical conductivity sigma(Omega) of an electron system near a quantum-critical point with finite-wavelength ordering. sigma(Omega) vanishes in clean Galilean-invariant systems, unless electrons are coupled to dynamical collective modes, which dissipate the current. This coupling introduces a nonuniversal energy scale. Depending on the parameters of each specific system, a variety of responses arise near criticality: scaling peaks at a temperature- and doping-dependent frequency, peaks at a fixed frequency, or no peaks to be associated with criticality. Therefore the lack of scaling in the far-infrared conductivity in cuprates does not necessarily call for new concepts of quantum criticality.

Optical conductivity near finite-wavelength quantum criticality

Caprara S;Grilli M;
2007

Abstract

We study the optical conductivity sigma(Omega) of an electron system near a quantum-critical point with finite-wavelength ordering. sigma(Omega) vanishes in clean Galilean-invariant systems, unless electrons are coupled to dynamical collective modes, which dissipate the current. This coupling introduces a nonuniversal energy scale. Depending on the parameters of each specific system, a variety of responses arise near criticality: scaling peaks at a temperature- and doping-dependent frequency, peaks at a fixed frequency, or no peaks to be associated with criticality. Therefore the lack of scaling in the far-infrared conductivity in cuprates does not necessarily call for new concepts of quantum criticality.
2007
INFM
FLUCTUATION CONDUCTIVITY
CRITICAL-POINT
SYSTEMS
SUPERCONDUCTORS
PSEUDOGAP
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/169896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact