Charged colloidal particles whose interacting potential is governed by a short-range attraction and a long-range screened electrostatic repulsion contributions form aggregates whose shape, size, and overall charge are sensitively dependent on the balance between attraction and repulsion. In some cases, this class of colloidal systems shows an equilibrium cluster phase, where particles associate and dissociate reversibly into clusters. When the aggregation of the charged particles is induced by adding an oppositely charged polyion, very close to the isoelectric condition, the interaggregate interactions become very strong and a dynamical arrested state seems to occur. We provide some experimental evidences of this structural arrest in a colloid system composed by vesicles built up by a cationic lipid stuck together by an oppositely charged linear polyion, by means of the combined use of static and dynamic light scattering technique complemented by laser Doppler electrophoretic measurements. Our results show that the second virial coefficient, which is related to the potential of mean force between two adjacent aggregates, markedly increases in the vicinity of the isoelectric point. We interpret this increase as a print of strong interparticle interactions, yielding to a dynamical arrested state via cluster growth.

Strong repulsive interactions in polyelectrolyte-liposome clusters close to the isoelectric point: A sign of an arrested state

Bordi F;Sennato S;
2007

Abstract

Charged colloidal particles whose interacting potential is governed by a short-range attraction and a long-range screened electrostatic repulsion contributions form aggregates whose shape, size, and overall charge are sensitively dependent on the balance between attraction and repulsion. In some cases, this class of colloidal systems shows an equilibrium cluster phase, where particles associate and dissociate reversibly into clusters. When the aggregation of the charged particles is induced by adding an oppositely charged polyion, very close to the isoelectric condition, the interaggregate interactions become very strong and a dynamical arrested state seems to occur. We provide some experimental evidences of this structural arrest in a colloid system composed by vesicles built up by a cationic lipid stuck together by an oppositely charged linear polyion, by means of the combined use of static and dynamic light scattering technique complemented by laser Doppler electrophoretic measurements. Our results show that the second virial coefficient, which is related to the potential of mean force between two adjacent aggregates, markedly increases in the vicinity of the isoelectric point. We interpret this increase as a print of strong interparticle interactions, yielding to a dynamical arrested state via cluster growth.
2007
INFM
LIPID-DNA COMPLEXES
COLLOIDAL PARTICLES
CHARGE INVERSION
GENE DELIVERY
REENTRANT CONDENSATION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/169916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact