Au induced faceting of a 4 degrees vicinal Si(001) surface was studied with chemical resolution using soft x-ray photoemission electron microscopy. For the first time a direct and quantitative determination of the local Au coverage in situ and during deposition was possible. Au atoms, necessary for the expansion of (001) terraces, are accummulated from a lattice gas, resulting in a phase separation between Au enriched terraces and Au depleted step bunches. During a second stage Au also adsorbs on the step bunches and transforms them into (119) facets. A simple Monte Carlo simulation shows that the initial coverage difference between terraces and bunches determines the regularity of the formed mesoscopic grating.
Spatial variation of Au coverage as the driving force for nanoscopic pattern formation
Heun S Heun S;
2001
Abstract
Au induced faceting of a 4 degrees vicinal Si(001) surface was studied with chemical resolution using soft x-ray photoemission electron microscopy. For the first time a direct and quantitative determination of the local Au coverage in situ and during deposition was possible. Au atoms, necessary for the expansion of (001) terraces, are accummulated from a lattice gas, resulting in a phase separation between Au enriched terraces and Au depleted step bunches. During a second stage Au also adsorbs on the step bunches and transforms them into (119) facets. A simple Monte Carlo simulation shows that the initial coverage difference between terraces and bunches determines the regularity of the formed mesoscopic grating.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


