The authors demonstrate a simple method to achieve local tuning of optical modes in GaAs photonic crystal nanocavities by continuous wave laser-assisted oxidation in air atmosphere. By irradiation with a focused laser beam at power levels of a few tens of milliwatts, photonic crystal nanocavity modes shift to shorter wavelengths by up to 2.5 nm. The mode shifts can be controlled either by varying the laser power or by iterating laser-assisted oxidation steps and are well explained by finite-element-method and finite-difference time-domain simulations. This method provides a simple route to achieve fine spectral tuning of individual nanocavities for photonic devices.

Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation

A Gerardino;
2009

Abstract

The authors demonstrate a simple method to achieve local tuning of optical modes in GaAs photonic crystal nanocavities by continuous wave laser-assisted oxidation in air atmosphere. By irradiation with a focused laser beam at power levels of a few tens of milliwatts, photonic crystal nanocavity modes shift to shorter wavelengths by up to 2.5 nm. The mode shifts can be controlled either by varying the laser power or by iterating laser-assisted oxidation steps and are well explained by finite-element-method and finite-difference time-domain simulations. This method provides a simple route to achieve fine spectral tuning of individual nanocavities for photonic devices.
2009
Istituto di fotonica e nanotecnologie - IFN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/170012
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 48
social impact