Shake-up transitions occurring upon core photoionization in the SF6 molecule have been studied experimentally and theoretically. The S 2p, S 2s and F 1s shake-up satellite photoelectron spectra were measured using Al Ka radiation at 1487 eV photon energy. They have been interpreted with the aid of ab initio configuration interaction calculations in the sudden-limit approximation. For the S 2p spectrum, conjugate shake-up transitions were also calculated. Clear evidence of conjugate processes is observed in the S 2p shake-up spectrum measured at 230 eV photon energy. The experimental and theoretical S 2p and S 2s shake-up spectra show very similar structures mainly due to orbital relaxation involving S 3s and 3p participation. For the calculation of the F 1s shake-up spectrum, the symmetry lowering of the molecule in the final states was considered, resulting in a good agreement with the experiment.
Shake-up transitions in S 2p, S 2s and F 1s photoionization of the SF6 molecule
P Decleva;
2009
Abstract
Shake-up transitions occurring upon core photoionization in the SF6 molecule have been studied experimentally and theoretically. The S 2p, S 2s and F 1s shake-up satellite photoelectron spectra were measured using Al Ka radiation at 1487 eV photon energy. They have been interpreted with the aid of ab initio configuration interaction calculations in the sudden-limit approximation. For the S 2p spectrum, conjugate shake-up transitions were also calculated. Clear evidence of conjugate processes is observed in the S 2p shake-up spectrum measured at 230 eV photon energy. The experimental and theoretical S 2p and S 2s shake-up spectra show very similar structures mainly due to orbital relaxation involving S 3s and 3p participation. For the calculation of the F 1s shake-up spectrum, the symmetry lowering of the molecule in the final states was considered, resulting in a good agreement with the experiment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.