Diode lasers enable one to continuously cover the 730 to 1100 nm range as well as the 370 to 550 nm range by frequency doubling, but a large part of the electro-magnetic spectrum spanning from green to red remains accessible only through expensive and unpractical optically pumped dye lasers. Here we devise a method to multiply the frequency of optical waves by a factor 3/2 with a conversion that is phase-coherent and highly efficient. Together with harmonic generation, it will enable one to cover the visible spectrum with semiconductor lasers, opening new avenues in important fields such as laser spectroscopy and optical metrology. (c) 2007 Optical Society of America.

Generating green to red light with semiconductor lasers

Ferrari G
2007

Abstract

Diode lasers enable one to continuously cover the 730 to 1100 nm range as well as the 370 to 550 nm range by frequency doubling, but a large part of the electro-magnetic spectrum spanning from green to red remains accessible only through expensive and unpractical optically pumped dye lasers. Here we devise a method to multiply the frequency of optical waves by a factor 3/2 with a conversion that is phase-coherent and highly efficient. Together with harmonic generation, it will enable one to cover the visible spectrum with semiconductor lasers, opening new avenues in important fields such as laser spectroscopy and optical metrology. (c) 2007 Optical Society of America.
2007
INFM
OPTICAL PARAMETRIC OSCILLATOR
PERIODICALLY POLED LINBO3
CONTINUOUS-WAVE
ATOMIC PHYSICS
KTIOPO4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/170068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact