We consider the theoretical description of real-time counting of electrons tunneling through a Coulomb-blockade quantum dot using a detector with finite bandwidth. By tracing out the quantum dot we find that the dynamics of the detector effectively is non-Markovian. We calculate the cumulant generating function corresponding to the resulting non-Markovian rate equation and find that the measured current cumulants behave significantly differently compared to those of a Markovian transport process. Our findings provide a novel interpretation of noise suppression found in a number of systems.

Non-Markovian dynamics in the theory of full counting statistics

Braggio A;
2007

Abstract

We consider the theoretical description of real-time counting of electrons tunneling through a Coulomb-blockade quantum dot using a detector with finite bandwidth. By tracing out the quantum dot we find that the dynamics of the detector effectively is non-Markovian. We calculate the cumulant generating function corresponding to the resulting non-Markovian rate equation and find that the measured current cumulants behave significantly differently compared to those of a Markovian transport process. Our findings provide a novel interpretation of noise suppression found in a number of systems.
2007
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
978-0-7354-0432-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/1702
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact