In this paper we propose a primal-dual algorithm for the solution of general nonlinear programming problems. The core of the method is a local algorithm which relies on a truncated procedure for the computation of a search direction, and is thus suitable for large scale problems. The truncated direction produces a sequence of points which locally converges to a KKT pair with superlinear convergence rate. The local algorithm is globalized by means of a suitable merit function which is able to measure and to enforce progress of the iterates towards a KKT pair, without deteriorating the local efficiency. In particular, we adopt the exact augmented Lagrangian function introduced in Pillo and Lucidi (SIAM J. Optim. 12:376-406, 2001), which allows us to guarantee the boundedness of the sequence produced by the algorithm and which has strong connections with the above mentioned truncated direction. The resulting overall algorithm is globally and superlinearly convergent under mild assumptions.

A truncated Newton method in an augmented Lagrangian framework for nonlinear programming

Liuzzi G;Palagi L
2010

Abstract

In this paper we propose a primal-dual algorithm for the solution of general nonlinear programming problems. The core of the method is a local algorithm which relies on a truncated procedure for the computation of a search direction, and is thus suitable for large scale problems. The truncated direction produces a sequence of points which locally converges to a KKT pair with superlinear convergence rate. The local algorithm is globalized by means of a suitable merit function which is able to measure and to enforce progress of the iterates towards a KKT pair, without deteriorating the local efficiency. In particular, we adopt the exact augmented Lagrangian function introduced in Pillo and Lucidi (SIAM J. Optim. 12:376-406, 2001), which allows us to guarantee the boundedness of the sequence produced by the algorithm and which has strong connections with the above mentioned truncated direction. The resulting overall algorithm is globally and superlinearly convergent under mild assumptions.
2010
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Constrained optimization
Nonlinear programming algorithms
Large scale optimization
Truncated Newton-type algorithms
Exact augmented Lagrangian functions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/170359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 11
social impact