Vibrational properties of inclusion complexes with cyclodextrins are studied by means of Raman spectroscopy and numerical simulation. In particular, Raman spectra of the nonsteroidal, anti-inflammatory drug indomethacin undergo notable changes in the energy range between 1600 and 1700 cm(-1) when inclusion complexes with cyclodextrins are formed. By using both ab initio quantum chemical calculations and molecular dynamics, we studied how to relate such changes to the geometry of the inclusion process, disentangling single-molecule effects, from changes in the solid state structure or dimerization processes. (c) 2006 American Institute of Physics.

Vibrational properties of inclusion complexes: The case of indomethacin-cyclodextrin

2006

Abstract

Vibrational properties of inclusion complexes with cyclodextrins are studied by means of Raman spectroscopy and numerical simulation. In particular, Raman spectra of the nonsteroidal, anti-inflammatory drug indomethacin undergo notable changes in the energy range between 1600 and 1700 cm(-1) when inclusion complexes with cyclodextrins are formed. By using both ab initio quantum chemical calculations and molecular dynamics, we studied how to relate such changes to the geometry of the inclusion process, disentangling single-molecule effects, from changes in the solid state structure or dimerization processes. (c) 2006 American Institute of Physics.
2006
INFM
BETA-CYCLODEXTRIN
MOLECULAR-DYNAMICS
RAMAN-SPECTROSCOPY
SILVER ELECTRODE
DENSITY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/170363
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact