Mycobacterium smegmatis ferredoxin FdxA, which has an orthologue ferredoxin in Mycobacterium tuberculosis, FdxC, contains both one [3Fe-4S] and one [4Fe-4S] cluster. M. smegmatis FdxA has been shown to be a preferred ferredoxin substrate of FprA [F. Fischer, D. Raimondi, A. Aliverti, G. Zanetti, Mycobacterium tuberculosis FprA, a novel bacterial NADPH-ferredoxin reductase, Eur. J. Biochem. 269 (2002) 3005-3013], an adrenodoxin reductase-like flavoprotein of M. tuberculosis, suggesting that M. tuberculosis FdxC could be the physiological partner of the enzyme in providing reducing power to the cytochromes P450. We report here the crystal structure of FdxA at 1.6 angstrom resolution (R-factor 16.5%, R-free 20.2%). Besides providing an insight on protein architecture for this 106-residue ferredoxin, our crystallographic investigation highlights lability of the [4Fe-4S] center, which is shown to loose a Fe atom during crystal growth. Due to their high similarity (87% sequence identity), the structure here reported can be considered a valuable model for M. tuberculosis FdxC thus representing a step forward in the study of the complex mycobacterial redox pathways. (c) 2007 Elsevier Inc. All rights reserved.

The crystal structure of FdxA, a 7Fe ferredoxin from Mycobacterium smegmatis

Bolognesi M
2007

Abstract

Mycobacterium smegmatis ferredoxin FdxA, which has an orthologue ferredoxin in Mycobacterium tuberculosis, FdxC, contains both one [3Fe-4S] and one [4Fe-4S] cluster. M. smegmatis FdxA has been shown to be a preferred ferredoxin substrate of FprA [F. Fischer, D. Raimondi, A. Aliverti, G. Zanetti, Mycobacterium tuberculosis FprA, a novel bacterial NADPH-ferredoxin reductase, Eur. J. Biochem. 269 (2002) 3005-3013], an adrenodoxin reductase-like flavoprotein of M. tuberculosis, suggesting that M. tuberculosis FdxC could be the physiological partner of the enzyme in providing reducing power to the cytochromes P450. We report here the crystal structure of FdxA at 1.6 angstrom resolution (R-factor 16.5%, R-free 20.2%). Besides providing an insight on protein architecture for this 106-residue ferredoxin, our crystallographic investigation highlights lability of the [4Fe-4S] center, which is shown to loose a Fe atom during crystal growth. Due to their high similarity (87% sequence identity), the structure here reported can be considered a valuable model for M. tuberculosis FdxC thus representing a step forward in the study of the complex mycobacterial redox pathways. (c) 2007 Elsevier Inc. All rights reserved.
2007
INFM
BACTERIAL FERREDOXINS
MOLECULAR-GRAPHICS
3FE-4S CLUSTER
RESOLUTION
EVOLUTIONARY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/170660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact