Langevin dynamics is employed to study the looping kinetics of self-avoiding polymers both in ideal and crowded solutions. A rich kinetics results from the competition of two crowding-induced effects: the depletion attraction and the enhanced viscous friction. For short chains, the enhanced friction slows down looping, while for longer chains, the depletion attraction renders it more frequent and persistent. We discuss the possible relevance of the findings for chromatin looping in living cells.

Depletion effects and loop formation in self-avoiding polymers

Micheletti C
2006

Abstract

Langevin dynamics is employed to study the looping kinetics of self-avoiding polymers both in ideal and crowded solutions. A rich kinetics results from the competition of two crowding-induced effects: the depletion attraction and the enhanced viscous friction. For short chains, the enhanced friction slows down looping, while for longer chains, the depletion attraction renders it more frequent and persistent. We discuss the possible relevance of the findings for chromatin looping in living cells.
2006
INFM
GENOME
TRANSCRIPTION
ORGANIZATION
REPLICATION
DYNAMICS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/170912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact