Bis(acetate) ruthenium(II) complexes of the general formula Ru(CO)2(OAc)2(PnBu3)[P(p-XC6H4)3] (OAc = acetate, X = CH3O, CH3, H, F or Cl), containing different phosphine ligands trans to PnBu3, have been employed as catalyst precursors for the hydrogenation of 1- hexene, acetophenone, 2-butanone and benzylideneacetone. For comparative purposes, analogous reactions have been performed using the homodiphosphine precursors Ru(CO)2(OAc)2(PnBu3)2 and Ru(CO)2(OAc)2(PPh3)2. The catalytic activity of the heterodiphosphine complexes depends on the basicity of the triarylphosphine trans to PnBu3 as this factor controls, inter alia, the rate of formation of hydride(acetate), Ru(CO)2(H)(OAc)(PnBu3)[P(p-XC6H4)3], or dihydride, Ru(CO)2(H)2(PnBu3)[(p-XC6H4)3], complexes, by hydrogenation of the bis(OAc) precursors. The catalytic hydrogenation of the C@C double bond is best accomplished by homodiphosphine dihydride catalysts, while heterodiphosphine monohydrides are more efficient catalysts than the homo- and heterodiphosphine dihydrides for the reduction of the keto C@O bond.
Mononuclear ruthenium complexes containing two different phosphines in trans position: II Catalytic hydrogenation of C=C and C=O bonds
Bianchini Claudio;Oberhauser Werner
2007
Abstract
Bis(acetate) ruthenium(II) complexes of the general formula Ru(CO)2(OAc)2(PnBu3)[P(p-XC6H4)3] (OAc = acetate, X = CH3O, CH3, H, F or Cl), containing different phosphine ligands trans to PnBu3, have been employed as catalyst precursors for the hydrogenation of 1- hexene, acetophenone, 2-butanone and benzylideneacetone. For comparative purposes, analogous reactions have been performed using the homodiphosphine precursors Ru(CO)2(OAc)2(PnBu3)2 and Ru(CO)2(OAc)2(PPh3)2. The catalytic activity of the heterodiphosphine complexes depends on the basicity of the triarylphosphine trans to PnBu3 as this factor controls, inter alia, the rate of formation of hydride(acetate), Ru(CO)2(H)(OAc)(PnBu3)[P(p-XC6H4)3], or dihydride, Ru(CO)2(H)2(PnBu3)[(p-XC6H4)3], complexes, by hydrogenation of the bis(OAc) precursors. The catalytic hydrogenation of the C@C double bond is best accomplished by homodiphosphine dihydride catalysts, while heterodiphosphine monohydrides are more efficient catalysts than the homo- and heterodiphosphine dihydrides for the reduction of the keto C@O bond.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.