Plants emit volatile organic compounds (VOCs) that play important roles in their interaction with the environment and have a major impact on atmospheric chemistry. The development of static and dynamic techniques for headspace collection of volatiles in combination with gas chromatography-mass spectrometry analysis has significantly improved our understanding of the biosynthesis and ecology of plant VOCs. Advances in automated analysis of VOCs have allowed the monitoring of fast changes in VOC emissions and facilitated in vivo studies of VOC biosynthesis. This review presents an overview of methods for the analysis of plant VOCs, including their advantages and disadvantages, with a focus on the latest technical developments. It provides guidance on how to select appropriate instrumentation and protocols for biochemical, physiological and ecologically relevant applications. These include headspace analyses of plant VOCs emitted by the whole organism, organs or enzymes as well as advanced on-line analysis methods for simultaneous measurements of VOC emissions with other physiological parameters.

Practical approaches to plant volatile analysis

Loreto F;
2006

Abstract

Plants emit volatile organic compounds (VOCs) that play important roles in their interaction with the environment and have a major impact on atmospheric chemistry. The development of static and dynamic techniques for headspace collection of volatiles in combination with gas chromatography-mass spectrometry analysis has significantly improved our understanding of the biosynthesis and ecology of plant VOCs. Advances in automated analysis of VOCs have allowed the monitoring of fast changes in VOC emissions and facilitated in vivo studies of VOC biosynthesis. This review presents an overview of methods for the analysis of plant VOCs, including their advantages and disadvantages, with a focus on the latest technical developments. It provides guidance on how to select appropriate instrumentation and protocols for biochemical, physiological and ecologically relevant applications. These include headspace analyses of plant VOCs emitted by the whole organism, organs or enzymes as well as advanced on-line analysis methods for simultaneous measurements of VOC emissions with other physiological parameters.
2006
Istituto di Biologia Agro-ambientale e Forestale - IBAF - Sede Porano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/171162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact