OBJECTIVE: To investigate in man the factor structure of retinal oscillatory potentials (OPs) to full-field luminance stimulation (0.9-9.5 cd.s.m(-2)) and the correlation with the spontaneous fluctuations of plasma ammonia. METHODS: Six male healthy volunteers were studied. Five OP recordings and ammonia determinations (GLDH method) were obtained for each subject at 2 h interval during an 8 h experimental session. A standard factor analysis was applied on the OP latency (time from stimulus to peak) and amplitudes values. RESULTS: Two consecutive factors on latencies and two factors on amplitudes were identified, consistent with reported differences between the earlier and later OP waves. The model explained a large portion of the OP variance. Both factors on latencies and factor 1 on amplitudes were directly correlated to the stimulus intensity and the ammonia plasma concentration in the 15.8-39.5 micromol/l range. Factors 1 and 2 on latencies decreased and factor 1 on amplitude increased at increasing stimulus intensities. The latency factors decreased and the amplitude factor increased with increasing ammonia concentration. Factor 2 on amplitudes did not correlate with the stimulus intensity or ammonia concentration. CONCLUSIONS: The factor structure further supports the evidence of functional differences between early and late OP waves. The observed correlation conceivably reflects a role of ammonia in the modulation of retinal electrophysiology in physiological conditions and potentially accounts for spontaneous variability in otherwise controlled electrophysiological studies.

Factor structure and ammonia-related modulation of the human retinal oscillatory potentials.

De Carli F;
2001

Abstract

OBJECTIVE: To investigate in man the factor structure of retinal oscillatory potentials (OPs) to full-field luminance stimulation (0.9-9.5 cd.s.m(-2)) and the correlation with the spontaneous fluctuations of plasma ammonia. METHODS: Six male healthy volunteers were studied. Five OP recordings and ammonia determinations (GLDH method) were obtained for each subject at 2 h interval during an 8 h experimental session. A standard factor analysis was applied on the OP latency (time from stimulus to peak) and amplitudes values. RESULTS: Two consecutive factors on latencies and two factors on amplitudes were identified, consistent with reported differences between the earlier and later OP waves. The model explained a large portion of the OP variance. Both factors on latencies and factor 1 on amplitudes were directly correlated to the stimulus intensity and the ammonia plasma concentration in the 15.8-39.5 micromol/l range. Factors 1 and 2 on latencies decreased and factor 1 on amplitude increased at increasing stimulus intensities. The latency factors decreased and the amplitude factor increased with increasing ammonia concentration. Factor 2 on amplitudes did not correlate with the stimulus intensity or ammonia concentration. CONCLUSIONS: The factor structure further supports the evidence of functional differences between early and late OP waves. The observed correlation conceivably reflects a role of ammonia in the modulation of retinal electrophysiology in physiological conditions and potentially accounts for spontaneous variability in otherwise controlled electrophysiological studies.
2001
Istituto di Bioimmagini e Fisiologia Molecolare - IBFM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/171269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact