The Brownian dynamics of an optically trapped water droplet are investigated across the transition from over- to underdamped oscillations. The spectrum of position fluctuations evolves from a Lorentzian shape typical of overdamped systems (beads in liquid solvents) to a damped harmonic oscillator spectrum showing a resonance peak. In this later underdamped regime, we excite parametric resonance by periodically modulating the trapping power at twice the resonant frequency. The power spectra of position fluctuations are in excellent agreement with the obtained analytical solutions of a parametrically modulated Langevin equation.

Parametric resonance of optically trapped aerosols

Di Leonardo R;Ruocco G;
2007

Abstract

The Brownian dynamics of an optically trapped water droplet are investigated across the transition from over- to underdamped oscillations. The spectrum of position fluctuations evolves from a Lorentzian shape typical of overdamped systems (beads in liquid solvents) to a damped harmonic oscillator spectrum showing a resonance peak. In this later underdamped regime, we excite parametric resonance by periodically modulating the trapping power at twice the resonant frequency. The power spectra of position fluctuations are in excellent agreement with the obtained analytical solutions of a parametrically modulated Langevin equation.
2007
INFM
TWEEZERS
DROPLETS
MODEL
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/171395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 61
social impact