Tetrabromobisphenol A (TBBPA) degradation was investigated using white rot fungi and their oxidative enzymes. Strains of the Trametes, Pleurotus, Bjerkandera and Dichomitus genera eliminated almost 1 mM TBBPA within 4 days. Laccase, whose role in TBBPA degradation was demonstrated in fungal cultures, was applied to TBBPA degradation alone and in combination with cellobiose dehydrogenase from Sclerotium rolfsii. Purified laccase from Trametes versicolor degraded approximately 2 mM TBBPA within 5 h, while the addition of cellobiose dehydrogenase increased the degradation rate to almost 2.5 mM within 3 h. Laccase was used to prepare TBBPA metabolites 2,6-dibromo-4-(2-hydroxypropane-2-yl) phenol (1), 2,6-dibromo-4-(2-methoxypropane-2-yl) phenol (2) and 1-(3,5-dibromo-4-hydroxyphen-1-y1)-2,2',6,6'-tetrabromo-4,4'-isopropylidene diphenol (3). As compounds 1 and 3 were identical to the TBBPA metabolites prepared by using rat and human liver fractions (Zalko et al., 2006), laccase can provide a simple means of preparing these metabolites for toxicity studies. Products 1 and 3 exhibited estrogenic effects, unlike TBBPA, but lower cell toxicity. (C) 2011 Elsevier Ltd. All rights reserved.

Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products

Monti Daniela;
2011

Abstract

Tetrabromobisphenol A (TBBPA) degradation was investigated using white rot fungi and their oxidative enzymes. Strains of the Trametes, Pleurotus, Bjerkandera and Dichomitus genera eliminated almost 1 mM TBBPA within 4 days. Laccase, whose role in TBBPA degradation was demonstrated in fungal cultures, was applied to TBBPA degradation alone and in combination with cellobiose dehydrogenase from Sclerotium rolfsii. Purified laccase from Trametes versicolor degraded approximately 2 mM TBBPA within 5 h, while the addition of cellobiose dehydrogenase increased the degradation rate to almost 2.5 mM within 3 h. Laccase was used to prepare TBBPA metabolites 2,6-dibromo-4-(2-hydroxypropane-2-yl) phenol (1), 2,6-dibromo-4-(2-methoxypropane-2-yl) phenol (2) and 1-(3,5-dibromo-4-hydroxyphen-1-y1)-2,2',6,6'-tetrabromo-4,4'-isopropylidene diphenol (3). As compounds 1 and 3 were identical to the TBBPA metabolites prepared by using rat and human liver fractions (Zalko et al., 2006), laccase can provide a simple means of preparing these metabolites for toxicity studies. Products 1 and 3 exhibited estrogenic effects, unlike TBBPA, but lower cell toxicity. (C) 2011 Elsevier Ltd. All rights reserved.
2011
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
White rot fungi
Laccase
Cellobiose dehydrogenase
Tetrabromobisphenol A metabolites
Estrogenic activity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/171407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 52
social impact