Here we report a comprehensive analysis through alanine-scanning mutagenesis of the contribution of surface ion pairs to the thermal stability of Alicyclobacillus acidocaldarius esterase 2 (EST2). We produced 16 single mutants, 4 double mutants corresponding to selected ion pairs R31/E118, E43/K102, R58/D130, D145/R148, 2 double mutants (R63A/R98A and E50A/D94A) involving residues of a large ion network on the protein surface and the double-mutant R98A/R148A meant to disrupt the R98 interactions within the said network and, contextually, the interaction between R148 and D145. The double-mutant E43A/E273K was obtained by chance. All selected residues were replaced with alanine except E91, which was mutated to a glycine and K102, which was changed to a glutamine. All 24 proteins were over-expressed in Escherichia coli, purified and characterized with respect to the main features. Structural stability data were compared with an in silico prediction of G values. Our study of the individual factors involved in thermostability and their structural interpretation reveals that the great stability of this thermophilic protein can be explained by the contribution of a few residues at the protein surface.

Comprehensive analysis of surface charged residues involved in thermal stability in Alicyclobacillus acidocaldarius esterase 2

MANDRICH L;MANCO G
2012

Abstract

Here we report a comprehensive analysis through alanine-scanning mutagenesis of the contribution of surface ion pairs to the thermal stability of Alicyclobacillus acidocaldarius esterase 2 (EST2). We produced 16 single mutants, 4 double mutants corresponding to selected ion pairs R31/E118, E43/K102, R58/D130, D145/R148, 2 double mutants (R63A/R98A and E50A/D94A) involving residues of a large ion network on the protein surface and the double-mutant R98A/R148A meant to disrupt the R98 interactions within the said network and, contextually, the interaction between R148 and D145. The double-mutant E43A/E273K was obtained by chance. All selected residues were replaced with alanine except E91, which was mutated to a glycine and K102, which was changed to a glutamine. All 24 proteins were over-expressed in Escherichia coli, purified and characterized with respect to the main features. Structural stability data were compared with an in silico prediction of G values. Our study of the individual factors involved in thermostability and their structural interpretation reveals that the great stability of this thermophilic protein can be explained by the contribution of a few residues at the protein surface.
2012
Istituto di Biochimica delle Proteine - IBP - Sede Napoli
HORMONE-SENSITIVE LIPASE; PROTEIN STABILITY; THERMOPHILIC ESTERASE; HIGH-TEMPERATURES; HYPERTHERMOPHILIC PROTEINS; CONFORMATIONAL STABILITY; BACILLUS-ACIDOCALDARIUS; SEQUENCE SIMILARITY; CRYSTAL-STRUCTURE; SALT BRIDGES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/171818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact