Water immersion can cause airways closure during tidal breathing, and his may result in areas of low ventilation-perfusion (VA/Q) ratios (VA/Q less than or equal to 0.1) and/or shunt and, ultimately, hypoxemia. We studied this in 12 normal males: 6 young (Y; aged 20-29 yr) with closing volume (CV) less than expiratory reserve volume (ERV), and six older (O; aged 40-54 yr) with CV greater than ERV during seated head-out immersion. Arterial and expired inert gas concentrations and dye-dilution cardiac output (Q) were measured before and at 2, 5, 10, 15, and 20 min in 35 degrees C water. During immersion, Y showed increases in expired minute ventilation (VE; 8.3-10.3 l/min), Q (6.1-8.2 l/min), and arterial PO2 (PaO2; 91-98 Torr; P less than or equal to 0.05). However, O2 uptake (VO2), shunt, amount of low-VA/Q areas (% of Q), and the log standard deviation of the perfusion distribution (log SDQ) were unchanged. During immersion, O showed increases in shunt (0.6-1.8% of Q), VE (8.5-11.4 l/min), and VO2 (0.31-0.40 l/min) but showed no change in low-VA/Q areas, log SDQ, Q, or PaO2. Throughout, O showed more VA/Q inequality (greater log SDQ) than Y (O, 0.69 vs. Y, 0.47).

Ventilation-perfusion relationships in the lung during head-out water immersion.

Prediletto R;
1992

Abstract

Water immersion can cause airways closure during tidal breathing, and his may result in areas of low ventilation-perfusion (VA/Q) ratios (VA/Q less than or equal to 0.1) and/or shunt and, ultimately, hypoxemia. We studied this in 12 normal males: 6 young (Y; aged 20-29 yr) with closing volume (CV) less than expiratory reserve volume (ERV), and six older (O; aged 40-54 yr) with CV greater than ERV during seated head-out immersion. Arterial and expired inert gas concentrations and dye-dilution cardiac output (Q) were measured before and at 2, 5, 10, 15, and 20 min in 35 degrees C water. During immersion, Y showed increases in expired minute ventilation (VE; 8.3-10.3 l/min), Q (6.1-8.2 l/min), and arterial PO2 (PaO2; 91-98 Torr; P less than or equal to 0.05). However, O2 uptake (VO2), shunt, amount of low-VA/Q areas (% of Q), and the log standard deviation of the perfusion distribution (log SDQ) were unchanged. During immersion, O showed increases in shunt (0.6-1.8% of Q), VE (8.5-11.4 l/min), and VO2 (0.31-0.40 l/min) but showed no change in low-VA/Q areas, log SDQ, Q, or PaO2. Throughout, O showed more VA/Q inequality (greater log SDQ) than Y (O, 0.69 vs. Y, 0.47).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/171880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact