Two ion cyclotron range of frequencies ( ICRF) heating schemes proposed for the half-field operation phase of ITER in hydrogen plasmas-fundamental H majority and second harmonic He-3 ICRF heating-were recently investigated in JET. Although the same magnetic field and RF frequencies (f approximate to 42 MHz and f approximate to 52 MHz, respectively) were used, the density and particularly the plasma temperature were lower than those expected in the initial phase of ITER. Unlike for the well-performing H minority heating scheme to be used in He-4 plasmas, modest heating efficiencies (n = P-absorbed/P-launched < 40%) with dominant electron heating were found in both H plasma scenarios studied, and enhanced plasma-wall interaction manifested by high radiation losses and relatively large impurity content in the plasma was observed. This effect was stronger in the He-3 ICRF heating case than in the H majority heating experiments and it was verified that concentrations as high as similar to 20% are necessary to observe significant ion heating in this case. The RF acceleration of the heated ions was modest in both cases, although a small fraction of the 3He ions reached about 260 keV in the second harmonic He-3 heating experiments when 5MW of ICRF power was applied. Considerable RF acceleration of deuterium beam ions was also observed in some discharges of the He-3 heating experiments (where both the second and third harmonic ion cyclotron resonance layers of the D ions are inside the plasma) whilst it was practically absent in the majority hydrogen heating scenario. While hints of improved RF heating efficiency as a function of the plasma temperature and plasma dilution (with He-4) were confirmed in the H majority case, the He-3 concentration was the main handle on the heating efficiency in the second harmonic He-3 heating scenario.
Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET
Sozzi C;Gorini G;Nocente M;Tardocchi M;
2012
Abstract
Two ion cyclotron range of frequencies ( ICRF) heating schemes proposed for the half-field operation phase of ITER in hydrogen plasmas-fundamental H majority and second harmonic He-3 ICRF heating-were recently investigated in JET. Although the same magnetic field and RF frequencies (f approximate to 42 MHz and f approximate to 52 MHz, respectively) were used, the density and particularly the plasma temperature were lower than those expected in the initial phase of ITER. Unlike for the well-performing H minority heating scheme to be used in He-4 plasmas, modest heating efficiencies (n = P-absorbed/P-launched < 40%) with dominant electron heating were found in both H plasma scenarios studied, and enhanced plasma-wall interaction manifested by high radiation losses and relatively large impurity content in the plasma was observed. This effect was stronger in the He-3 ICRF heating case than in the H majority heating experiments and it was verified that concentrations as high as similar to 20% are necessary to observe significant ion heating in this case. The RF acceleration of the heated ions was modest in both cases, although a small fraction of the 3He ions reached about 260 keV in the second harmonic He-3 heating experiments when 5MW of ICRF power was applied. Considerable RF acceleration of deuterium beam ions was also observed in some discharges of the He-3 heating experiments (where both the second and third harmonic ion cyclotron resonance layers of the D ions are inside the plasma) whilst it was practically absent in the majority hydrogen heating scenario. While hints of improved RF heating efficiency as a function of the plasma temperature and plasma dilution (with He-4) were confirmed in the H majority case, the He-3 concentration was the main handle on the heating efficiency in the second harmonic He-3 heating scenario.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.