This paper presents a new derivation of nonparametric distribution estimation with right-censored data. It is based on an extension of the predictive inferences to compound evidence. The estimate is recursive and exact, and no stochastic approximation is needed: it simply requires that the censored data are processed in decreasing order. Only in this case the recursion provides exact posterior predictive distributions for subsequent samples under a Dirichlet process prior. The resulting estimate is equivalent to the Susarla-VanRyzin estimator and to the beta-Stacy process.

An exact predictive recursion for Bayesian nonparametric analysis of incomplete data

2012

Abstract

This paper presents a new derivation of nonparametric distribution estimation with right-censored data. It is based on an extension of the predictive inferences to compound evidence. The estimate is recursive and exact, and no stochastic approximation is needed: it simply requires that the censored data are processed in decreasing order. Only in this case the recursion provides exact posterior predictive distributions for subsequent samples under a Dirichlet process prior. The resulting estimate is equivalent to the Susarla-VanRyzin estimator and to the beta-Stacy process.
2012
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Censored data
predictive inference
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/173033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact