Large-Eddy Simulation is performed for a single day from the Cooperative Atmosphere-Surface Exchange Study (CASES-99) field program. This study investigates an observed case of evening transition boundary layer over land. Parameters of the ambient atmosphere in the LES-decay studies conducted so far were typically prescribed in an idealized form. To provide suitable data under the wide range of the PBL weather conditions, the LES should be able to adequately reproduce the PBL turbulence dynamics including - if possible - baroclinicity, radiation, large scale advection and not only be related to a decreasing surface heating. In addition LES-decay studies usually assume that the sensible heat flux decreases instantaneously or with a very short time scale. The main purpose of this investigation is to study the decay of boundary-layer average turbulent kinetic energy at sunset with large-eddy simulation that is forced with realistic environment conditions. This allows investigating the Turbulent Kinetic Energy decay over the realistic time scale that is observed in the atmosphere. During the intermediate and last stage of decay of the boundary-layer average Turbulent Kinetic Energy the exponents of the decay power law t-n go from 2 to 6, as evidenced by experimental results and recent analytical modelling in the surface layer.

The sunset decay of the convective turbulence with Large-Eddy Simulation under realistic conditions

U Rizza;MM Miglietta;
2013

Abstract

Large-Eddy Simulation is performed for a single day from the Cooperative Atmosphere-Surface Exchange Study (CASES-99) field program. This study investigates an observed case of evening transition boundary layer over land. Parameters of the ambient atmosphere in the LES-decay studies conducted so far were typically prescribed in an idealized form. To provide suitable data under the wide range of the PBL weather conditions, the LES should be able to adequately reproduce the PBL turbulence dynamics including - if possible - baroclinicity, radiation, large scale advection and not only be related to a decreasing surface heating. In addition LES-decay studies usually assume that the sensible heat flux decreases instantaneously or with a very short time scale. The main purpose of this investigation is to study the decay of boundary-layer average turbulent kinetic energy at sunset with large-eddy simulation that is forced with realistic environment conditions. This allows investigating the Turbulent Kinetic Energy decay over the realistic time scale that is observed in the atmosphere. During the intermediate and last stage of decay of the boundary-layer average Turbulent Kinetic Energy the exponents of the decay power law t-n go from 2 to 6, as evidenced by experimental results and recent analytical modelling in the surface layer.
2013
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Large-Eddy Simulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/173097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact