Insulin hyperpolarizes plasma membranes; we tested whether insulin affects ventricular repolarization. In 35 healthy volunteers, we measured the Q-T interval during electrocardiographic monitoring in the resting state and in response to hyperinsulinemia (euglycemic 1-mU. min(-1). kg(-1) insulin clamp). A computerized algorithm was used to identify T waves; Bazett's formula was employed to correct Q-T (QTc) by heart rate (HR). In the resting state, QTc was inversely related to indexes of body size (e.g., body surface area, r = -0.53, P = 0.001) but not to indexes of body fatness. During the clamp, HR (67 +/- 1 to 71 +/- 1 beats/min, P < 0.0001) and plasma norepinephrine levels (161 +/- 12 to 184 +/- 10 pg/ml, P < 0.001) increased. QTc rose promptly and consistently, averaging 428 +/- 6 ms between 30 and 100 min (P = 0.014 vs. the resting value of 420 +/- 5 ms). Fasting serum potassium (3.76 +/- 0.03 mM) declined to 3. 44 +/- 0.03 mM during insulin. After adjustment for body size, resting QTc was directly related to fasting plasma insulin (partial r = 0.43, P = 0.01); furthermore, QTc was inversely related to serum potassium levels both in the fasting state (partial r = -0.16, P < 0. 04) and during insulin stimulation (partial r = -0.47, P = 0.003). Neither resting nor clamp-induced QTc was related to insulin sensitivity. Physiological hyperinsulinemia acutely prolongs ventricular repolarization independent of insulin sensitivity. Both insulin-induced hypokalemia and adrenergic activation contribute to this effect.

Insulin prolongs the QTc interval in humans

Gastaldelli A;
2000

Abstract

Insulin hyperpolarizes plasma membranes; we tested whether insulin affects ventricular repolarization. In 35 healthy volunteers, we measured the Q-T interval during electrocardiographic monitoring in the resting state and in response to hyperinsulinemia (euglycemic 1-mU. min(-1). kg(-1) insulin clamp). A computerized algorithm was used to identify T waves; Bazett's formula was employed to correct Q-T (QTc) by heart rate (HR). In the resting state, QTc was inversely related to indexes of body size (e.g., body surface area, r = -0.53, P = 0.001) but not to indexes of body fatness. During the clamp, HR (67 +/- 1 to 71 +/- 1 beats/min, P < 0.0001) and plasma norepinephrine levels (161 +/- 12 to 184 +/- 10 pg/ml, P < 0.001) increased. QTc rose promptly and consistently, averaging 428 +/- 6 ms between 30 and 100 min (P = 0.014 vs. the resting value of 420 +/- 5 ms). Fasting serum potassium (3.76 +/- 0.03 mM) declined to 3. 44 +/- 0.03 mM during insulin. After adjustment for body size, resting QTc was directly related to fasting plasma insulin (partial r = 0.43, P = 0.01); furthermore, QTc was inversely related to serum potassium levels both in the fasting state (partial r = -0.16, P < 0. 04) and during insulin stimulation (partial r = -0.47, P = 0.003). Neither resting nor clamp-induced QTc was related to insulin sensitivity. Physiological hyperinsulinemia acutely prolongs ventricular repolarization independent of insulin sensitivity. Both insulin-induced hypokalemia and adrenergic activation contribute to this effect.
2000
Istituto di Fisiologia Clinica - IFC
HUMAN FOREARM
HYPOKALEMIA
POPULATION
DEATH
RISK
File in questo prodotto:
File Dimensione Formato  
prod_215095-doc_58756.pdf

non disponibili

Descrizione: Insulin prolongs the QTc interval in humans
Dimensione 141.22 kB
Formato Adobe PDF
141.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/173216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 67
social impact