Drosophila nup154 encodes a predicted nucleoporin homologous to yeast Nup170p, Nup157p, and vertebrate Nup155, all of which are major components of the nuclear pore complex (NPC). Unlike its yeast homologs, nup154 is essential for viability. Animals with strong loss-of-function nup154 mutations caused by P-element insertion in the 5'-UTR of the gene died as larvae with small discs, brains, and testes. nup154 mRNA expression appeared developmentally regulated in tissues of wild-type embryos, larvae, and adults, suggesting that new nup154 synthesis is required when assembly of new NPCs is required, as in proliferating or growing tissues. Two additional nup154 alleles also associated with different P-element inserts in the 5'-UTR were viable but had strong loss-of-function sterile phenotypes, including failure to maintain spermatogenic stem cells and failure to progress into vitellogenic stages of oogenesis. Lethality vs. viability correlated with orientation of the P-element inserts in the different alleles. Transcript analysis by 5'-RACE suggested a mechanism for allelic differences: an outward-directed promoter internal to the P-element 3' end able to drive sufficient expression of the nup154 transcript for viability but not for fertility.
Developmental genetics of the essential Drosophila nucleoporin nup154: allelic differences due to an outward-directed promoter in the P-element 3' end
Silvia Gigliotti;
1999
Abstract
Drosophila nup154 encodes a predicted nucleoporin homologous to yeast Nup170p, Nup157p, and vertebrate Nup155, all of which are major components of the nuclear pore complex (NPC). Unlike its yeast homologs, nup154 is essential for viability. Animals with strong loss-of-function nup154 mutations caused by P-element insertion in the 5'-UTR of the gene died as larvae with small discs, brains, and testes. nup154 mRNA expression appeared developmentally regulated in tissues of wild-type embryos, larvae, and adults, suggesting that new nup154 synthesis is required when assembly of new NPCs is required, as in proliferating or growing tissues. Two additional nup154 alleles also associated with different P-element inserts in the 5'-UTR were viable but had strong loss-of-function sterile phenotypes, including failure to maintain spermatogenic stem cells and failure to progress into vitellogenic stages of oogenesis. Lethality vs. viability correlated with orientation of the P-element inserts in the different alleles. Transcript analysis by 5'-RACE suggested a mechanism for allelic differences: an outward-directed promoter internal to the P-element 3' end able to drive sufficient expression of the nup154 transcript for viability but not for fertility.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.