The relativistic electron/positron particle beam propagation in overdense magnetized plasmas is studied theoretically, using a fluid plasma model and accounting for the quantum properties of individual particles. The collective character of the particle beam manifests through the macroscopic, beam created, plasma wake field. The transverse dynamics is described by the quantum Schrodinger equation for the single-particle wave function, within the Hartree mean-field approximation, coupled with the Poisson equations for the wake potential. The resulting nonlinear nonlocal Schrodinger equation is solved analytically in the strongly nonlocal regime, yielding breathing/wiggling Hermite-Gauss ring solitons. The nonstationary rings may be parametrically unstable. The conditions for instability and the growth rates are estimated analytically. Copyright (C) EPLA, 2012

Quantum ring soliton formation by strongly nonlocal plasma wake field response to a relativistic electron beam

De Nicola S;
2012

Abstract

The relativistic electron/positron particle beam propagation in overdense magnetized plasmas is studied theoretically, using a fluid plasma model and accounting for the quantum properties of individual particles. The collective character of the particle beam manifests through the macroscopic, beam created, plasma wake field. The transverse dynamics is described by the quantum Schrodinger equation for the single-particle wave function, within the Hartree mean-field approximation, coupled with the Poisson equations for the wake potential. The resulting nonlinear nonlocal Schrodinger equation is solved analytically in the strongly nonlocal regime, yielding breathing/wiggling Hermite-Gauss ring solitons. The nonstationary rings may be parametrically unstable. The conditions for instability and the growth rates are estimated analytically. Copyright (C) EPLA, 2012
2012
Istituto Nazionale di Ottica - INO
ACCELERATION
EXCITATION
LASER
MODEL
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/173573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact