In single-layer graphene sheets non-local interband exchange leads to a renormalized Fermi-surface effective mass which vanishes in the low carrier-density limit. We report on a comparative study of Fermi surface effective mass renormalization in single-layer and AB-stacked bilayer graphene. We explain why the mass does not approach zero in the bilayer case, although its value is still strongly suppressed.

Fermi velocity enhancement in monolayer and bilayer graphene

M Polini;
2009

Abstract

In single-layer graphene sheets non-local interband exchange leads to a renormalized Fermi-surface effective mass which vanishes in the low carrier-density limit. We report on a comparative study of Fermi surface effective mass renormalization in single-layer and AB-stacked bilayer graphene. We explain why the mass does not approach zero in the bilayer case, although its value is still strongly suppressed.
2009
graphene
Fermi-liquid theory
exchange physics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/173809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact