A two-dimensional gas of massless Dirac fermions (MDFs) is a very useful model to describe low-energy electrons in monolayer graphene. Because the MDF current operator is directly proportional to the (sublattice) pseudospin operator, the MDF current-current response function, which describes the response to a vector potential, happens to coincide with the pseudospin-pseudospin response function. In this work, we present analytical results for the wave vector- and frequency-dependent longitudinal and transverse pseudospin-pseudospin response functions of noninteracting MDFs. The transverse response in the static limit is then used to calculate the noninteracting orbital magnetic susceptibility. These results are a starting point for the construction of approximate pseudospin-pseudospin response functions that would take into account electron-electron interactions (for example at the random-phase-approximation level). They also constitute a very useful input for future applications of current-density-functional theory to graphene sheets subjected to time and spatially varying vector potentials.

Linear response of doped graphene sheets to vector potentials

M Polini;
2009

Abstract

A two-dimensional gas of massless Dirac fermions (MDFs) is a very useful model to describe low-energy electrons in monolayer graphene. Because the MDF current operator is directly proportional to the (sublattice) pseudospin operator, the MDF current-current response function, which describes the response to a vector potential, happens to coincide with the pseudospin-pseudospin response function. In this work, we present analytical results for the wave vector- and frequency-dependent longitudinal and transverse pseudospin-pseudospin response functions of noninteracting MDFs. The transverse response in the static limit is then used to calculate the noninteracting orbital magnetic susceptibility. These results are a starting point for the construction of approximate pseudospin-pseudospin response functions that would take into account electron-electron interactions (for example at the random-phase-approximation level). They also constitute a very useful input for future applications of current-density-functional theory to graphene sheets subjected to time and spatially varying vector potentials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/173816
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact