Metallic nanoparticles are known to enhance nonlinear optical processes due to a local enhancement of the optical field. This strategy has been proposed to enhance downconversion in thin film solar cells, but has various disadvantages, among which is the fact that the enhancement occurs only in a tiny volume close to the particles. We report on a very different physical mechanism that can lead to significant downconversion enhancement, namely, that of resonant light scattering, and which is a large volume effect. We show that only a tiny amount of resonantly scattering metallic (aluminum) nanoparticles is enough to create a significant enhancement of the fluorescence of dye molecules in the visible wavelength range. The strategy can be applied in general to increase the emission of UV-absorbing constituents, and is of particular use for solar energy. (C) 2012 Optical Society of America

Enhanced downconversion of UV light by resonant scattering of aluminum nanoparticles

Burresi Matteo;Wiersma Diederik S
2012

Abstract

Metallic nanoparticles are known to enhance nonlinear optical processes due to a local enhancement of the optical field. This strategy has been proposed to enhance downconversion in thin film solar cells, but has various disadvantages, among which is the fact that the enhancement occurs only in a tiny volume close to the particles. We report on a very different physical mechanism that can lead to significant downconversion enhancement, namely, that of resonant light scattering, and which is a large volume effect. We show that only a tiny amount of resonantly scattering metallic (aluminum) nanoparticles is enough to create a significant enhancement of the fluorescence of dye molecules in the visible wavelength range. The strategy can be applied in general to increase the emission of UV-absorbing constituents, and is of particular use for solar energy. (C) 2012 Optical Society of America
2012
Istituto Nazionale di Ottica - INO
PLASMONIC ENHANCEMENT
FLUORESCENCE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/174167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact