Airway epithelium alterations, including squamous cell metaplasia, characterize smokers with and without chronic obstructive pulmonary disease (COPD). The p21 regulates cell apoptosis and differentiation and its role in COPD is largely unknown. Molecules regulating apoptosis (cytoplasmic p21, caspase-3), cell cycle (nuclear p21), proliferation (Ki67/PCNA), and metaplasia (survivin) in central airways from smokers (S), smokers-COPD (s-COPD) and non-smokers (Controls) were studied. The role of cigarette smoke extracts (CSE) in p21, survivin, apoptosis (caspase-3 and annexin-V binding) and proliferation was assessed in a bronchial epithelial cell line (16HBE). Immunohistochemistry, image analysis in surgical samples and flow-cytometry and carboxyfluorescein succinimidyl ester proliferative assay in 16HBE with/without CSE were applied. Cytoplasmic and nuclear p21, survivin, and Ki67 expression significantly increased in large airway epithelium in S and in s-COPD in comparison to Controls. Caspase-3 was similar in all the studied groups. p21 correlated with epithelial metaplasia, PCNA, and Ki67 expression. CSE increased cytoplasmic p21 and survivin expression but not apoptosis and inhibited the cell proliferation in 16HBE. In large airway epithelium of smokers with and without COPD, the cytoplasmic p21 inhibits cell apoptosis, promotes cell proliferation and correlates with squamous cell metaplasia thus representing a potential pre-oncogenic hallmark.

The role of p21 Waf1/Cip1 in large airway epithelium in smokers with and without COPD.

Chiappara G;Gjomarkaj M;Sciarrino S;Ferraro M;Bruno A;Montalbano AM;Pace E
2013

Abstract

Airway epithelium alterations, including squamous cell metaplasia, characterize smokers with and without chronic obstructive pulmonary disease (COPD). The p21 regulates cell apoptosis and differentiation and its role in COPD is largely unknown. Molecules regulating apoptosis (cytoplasmic p21, caspase-3), cell cycle (nuclear p21), proliferation (Ki67/PCNA), and metaplasia (survivin) in central airways from smokers (S), smokers-COPD (s-COPD) and non-smokers (Controls) were studied. The role of cigarette smoke extracts (CSE) in p21, survivin, apoptosis (caspase-3 and annexin-V binding) and proliferation was assessed in a bronchial epithelial cell line (16HBE). Immunohistochemistry, image analysis in surgical samples and flow-cytometry and carboxyfluorescein succinimidyl ester proliferative assay in 16HBE with/without CSE were applied. Cytoplasmic and nuclear p21, survivin, and Ki67 expression significantly increased in large airway epithelium in S and in s-COPD in comparison to Controls. Caspase-3 was similar in all the studied groups. p21 correlated with epithelial metaplasia, PCNA, and Ki67 expression. CSE increased cytoplasmic p21 and survivin expression but not apoptosis and inhibited the cell proliferation in 16HBE. In large airway epithelium of smokers with and without COPD, the cytoplasmic p21 inhibits cell apoptosis, promotes cell proliferation and correlates with squamous cell metaplasia thus representing a potential pre-oncogenic hallmark.
2013
Istituto di biomedicina e di immunologia molecolare - IBIM - Sede Palermo
Apoptosis; Proliferation; Metaplasia; Epithelium; COPD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/174245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact