Complex networks have been receiving increasing attention by the scientific community, also due to the availability of massive network data from diverse domains. One problem largely studied so far is Link Prediction, i.e. the problem of predicting new upcoming connections in the network. However, one aspect of complex networks has been disregarded so far: real networks are often multidimensional, i.e. multiple connections may reside between any two nodes. In this context, we define the problem of Multidimensional Link Prediction, and we introduce several predictors based on structural analysis of the networks. We present the results obtained on real networks, showing the performances of both the introduced multidimensional versions of the Common Neighbors and Adamic-Adar, and the derived predictors aimed at capturing the multidimensional and temporal information extracted from the data. Our findings show that the evolution of multidimensional networks can be predicted, and that supervised models may improve the accuracy of underlying unsupervised predictors, if used in conjunction with them.

Scalable Link Prediction on Multidimensional Networks

Rossetti Giulio;Giannotti Fosca
2011

Abstract

Complex networks have been receiving increasing attention by the scientific community, also due to the availability of massive network data from diverse domains. One problem largely studied so far is Link Prediction, i.e. the problem of predicting new upcoming connections in the network. However, one aspect of complex networks has been disregarded so far: real networks are often multidimensional, i.e. multiple connections may reside between any two nodes. In this context, we define the problem of Multidimensional Link Prediction, and we introduce several predictors based on structural analysis of the networks. We present the results obtained on real networks, showing the performances of both the introduced multidimensional versions of the Common Neighbors and Adamic-Adar, and the derived predictors aimed at capturing the multidimensional and temporal information extracted from the data. Our findings show that the evolution of multidimensional networks can be predicted, and that supervised models may improve the accuracy of underlying unsupervised predictors, if used in conjunction with them.
2011
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-4673-0005-6
Link prediction
Social networks
File in questo prodotto:
File Dimensione Formato  
prod_206441-doc_46421.pdf

solo utenti autorizzati

Descrizione: contributo
Tipologia: Versione Editoriale (PDF)
Dimensione 629.62 kB
Formato Adobe PDF
629.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/174779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? ND
social impact