We describe a generative Bayesian model for action understanding in which inverse-forward internal model pairs are considered 'hypotheses' of plausible action goals that are explored in parallel via an approximate inference mechanism based on sequential Monte Carlo methods. The reenactment of internal model pairs can be considered a form of motor simulation, which supports both perceptual prediction and action understanding at the goal level. However, this procedure is generally considered to be computationally inefficient. We present a model that dynamically reallocates computational resources to more accurate internal models depending on both the available prior information and the prediction error of the inverse-forward models, and which leads to successful action recognition. We present experimental results that test the robustness and efficiency of our model in real-world scenarios.

Motor simulation via coupled internal models using sequential Monte Carlo

Pezzulo Giovanni
2011

Abstract

We describe a generative Bayesian model for action understanding in which inverse-forward internal model pairs are considered 'hypotheses' of plausible action goals that are explored in parallel via an approximate inference mechanism based on sequential Monte Carlo methods. The reenactment of internal model pairs can be considered a form of motor simulation, which supports both perceptual prediction and action understanding at the goal level. However, this procedure is generally considered to be computationally inefficient. We present a model that dynamically reallocates computational resources to more accurate internal models depending on both the available prior information and the prediction error of the inverse-forward models, and which leads to successful action recognition. We present experimental results that test the robustness and efficiency of our model in real-world scenarios.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.orgunit Istituto di Scienze e Tecnologie della Cognizione - ISTC -
dc.authority.people Dindo Haris it
dc.authority.people Zambuto Daniele it
dc.authority.people Pezzulo Giovanni it
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di Scienze e Tecnologie della Cognizione - ISTC *
dc.contributor.appartenenza.mi 986 *
dc.date.accessioned 2024/02/20 20:08:27 -
dc.date.available 2024/02/20 20:08:27 -
dc.date.issued 2011 -
dc.description.abstracteng We describe a generative Bayesian model for action understanding in which inverse-forward internal model pairs are considered 'hypotheses' of plausible action goals that are explored in parallel via an approximate inference mechanism based on sequential Monte Carlo methods. The reenactment of internal model pairs can be considered a form of motor simulation, which supports both perceptual prediction and action understanding at the goal level. However, this procedure is generally considered to be computationally inefficient. We present a model that dynamically reallocates computational resources to more accurate internal models depending on both the available prior information and the prediction error of the inverse-forward models, and which leads to successful action recognition. We present experimental results that test the robustness and efficiency of our model in real-world scenarios. -
dc.description.affiliations Consiglio Nazionale delle Ricerche ILC-CNR and ISTC-CNR -
dc.description.allpeople Dindo, Haris ; Zambuto, Daniele ; Pezzulo, Giovanni -
dc.description.allpeopleoriginal Dindo, Haris ; Zambuto, Daniele ; Pezzulo, Giovanni -
dc.description.fulltext none en
dc.description.note ID_PUMA: /cnr.istc/2011-A2-012. - Area di valutazione 01 - Scienze matematiche e informatiche ID_PUMA: cnr.ilc/2011-A2-012 -
dc.description.numberofauthors 1 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/175774 -
dc.language.iso eng -
dc.publisher.country USA -
dc.publisher.name AAAI Press -
dc.publisher.place Arlington [VA] -
dc.relation.alleditors T. Walsh -
dc.relation.conferencedate 16-22 July 2011 -
dc.relation.conferencename Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16-22 July 2011 -
dc.relation.conferenceplace Barcelona -
dc.relation.firstpage 2113 -
dc.relation.lastpage 2119 -
dc.subject.keywords prediction -
dc.subject.keywords simulation -
dc.subject.singlekeyword prediction *
dc.subject.singlekeyword simulation *
dc.title Motor simulation via coupled internal models using sequential Monte Carlo en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 203805 -
iris.orcid.lastModifiedDate 2024/03/01 16:06:05 *
iris.orcid.lastModifiedMillisecond 1709305565730 *
iris.sitodocente.maxattempts 1 -
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/175774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact