Information based on taxon-based indices is species-specific while information gained from function-based research can give a comprehensive view of ecosystem processes. We applied the guild-ratio, an index based on the proportion of functional groups of roofers (i.e. microphagous and raptorial species), on a long-term data set of Logo Maggiore. By applying seasonal trend decomposition based on smoothing techniques and non-metrical multidimensional scaling, we assessed the response of rotifer functional groups to changes in trophic state and climate. While the taxon-based indices showed smooth changes, the function-based index showed a dramatic shift from a raptorial to a microphagous dominance, with a back-shift to raptorial dominance starting in 2000. The seasonal peak of microphagous and raptorial dry weight was clearly separated in the pre-eutrophication period. When mesotrophic conditions prevailed both peaks overlapped Only to he separated again with re-oligotrophication. We attributed these alterations of rotifer functional groups to changes in competition with crustacean zooplankton and to decreased phytoplankton algal abundance and size while altered seasonality in functional groups could be related to inter-group competition fin. food. We hypothesise that the effects of trophic state (i.e. altered phytoplankton) and climate (i.e. altered cladoceran community) were transferred across trophic levels to rotifer functional groups. Our study highlights that functional groups are valid instruments for illustrating unifying principles in ecology through a better understanding of ecosystem processes and the interrelationship between trophic levels.

Response of rotifer functional groups to changing trophic state and crustacean community

2011

Abstract

Information based on taxon-based indices is species-specific while information gained from function-based research can give a comprehensive view of ecosystem processes. We applied the guild-ratio, an index based on the proportion of functional groups of roofers (i.e. microphagous and raptorial species), on a long-term data set of Logo Maggiore. By applying seasonal trend decomposition based on smoothing techniques and non-metrical multidimensional scaling, we assessed the response of rotifer functional groups to changes in trophic state and climate. While the taxon-based indices showed smooth changes, the function-based index showed a dramatic shift from a raptorial to a microphagous dominance, with a back-shift to raptorial dominance starting in 2000. The seasonal peak of microphagous and raptorial dry weight was clearly separated in the pre-eutrophication period. When mesotrophic conditions prevailed both peaks overlapped Only to he separated again with re-oligotrophication. We attributed these alterations of rotifer functional groups to changes in competition with crustacean zooplankton and to decreased phytoplankton algal abundance and size while altered seasonality in functional groups could be related to inter-group competition fin. food. We hypothesise that the effects of trophic state (i.e. altered phytoplankton) and climate (i.e. altered cladoceran community) were transferred across trophic levels to rotifer functional groups. Our study highlights that functional groups are valid instruments for illustrating unifying principles in ecology through a better understanding of ecosystem processes and the interrelationship between trophic levels.
2011
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Microphagous rotifers
raptorial rotifers
STL
Daphnia
diversity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/175779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 70
social impact