Time-frequency distribution methods are being widely used for the analysis of a variety of biomedical signals. Recently, they have been applied also to study otoacoustic emissions (OAE's), the active acoustic response of the hearing end organ. Click-evoked otoacoustic emissions (CEOAE's) are time-varying signals with a clear frequency dispersion along with the time axis. Analysis of CEOAE's is of considerable interest due to their close relation with cochlear mechanisms. In this paper, several basic time-frequency distribution methods are considered and compared on the basis of both simulated signals and real CEOAE's. The particular structure of CEOAE's requires a method with both a satisfactory time and frequency resolution. Results from simulations and real CEOAE's revealed that the wavelet approach is highly suitable for the analysis of such signals. Some examples of the application of the wavelet transform to CEOAE's are provided here, Applications range from the extraction of normative data from adult and neonatal OAE's to the extraction of quantitative parameters for clinical purposes.

Wavelet analysis of click-evoked otoacoustic emissions

Tognola G;Grandori F;Ravazzani P
1998

Abstract

Time-frequency distribution methods are being widely used for the analysis of a variety of biomedical signals. Recently, they have been applied also to study otoacoustic emissions (OAE's), the active acoustic response of the hearing end organ. Click-evoked otoacoustic emissions (CEOAE's) are time-varying signals with a clear frequency dispersion along with the time axis. Analysis of CEOAE's is of considerable interest due to their close relation with cochlear mechanisms. In this paper, several basic time-frequency distribution methods are considered and compared on the basis of both simulated signals and real CEOAE's. The particular structure of CEOAE's requires a method with both a satisfactory time and frequency resolution. Results from simulations and real CEOAE's revealed that the wavelet approach is highly suitable for the analysis of such signals. Some examples of the application of the wavelet transform to CEOAE's are provided here, Applications range from the extraction of normative data from adult and neonatal OAE's to the extraction of quantitative parameters for clinical purposes.
1998
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
INGEGNERIA BIOMEDICA
Choi-Williams distribution
click-evoked otoacoustic emissions
time-frequency resolution properties
wavelet transform
Wigner-Ville distribution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/17589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact