The release of the Microsoft Kinect has attracted the attention of researchers in a variety of computer science domains. Even though this device is still relatively new, its recent applications have shown some promising results in terms of replacing current conventional methods like the stereo-camera for robotics navigation, multi-camera system for motion detection and laser scanner for 3D reconstruction. While most work around the Kinect is on how to take full advantage of its capabilities, so far only a few studies have been carried out on the limitations of this device and fewer that provide solutions to enhance the precision of its measurements. In this paper, we review and analyse current work in this area, and present and evaluate a temporal denoising algorithm to reduce the instability of the depth measurements provided by the Kinect over different distances.

Temporal denoising of Kinect depth data

Luigi Gallo;Giuseppe De Pietro;
2012

Abstract

The release of the Microsoft Kinect has attracted the attention of researchers in a variety of computer science domains. Even though this device is still relatively new, its recent applications have shown some promising results in terms of replacing current conventional methods like the stereo-camera for robotics navigation, multi-camera system for motion detection and laser scanner for 3D reconstruction. While most work around the Kinect is on how to take full advantage of its capabilities, so far only a few studies have been carried out on the limitations of this device and fewer that provide solutions to enhance the precision of its measurements. In this paper, we review and analyse current work in this area, and present and evaluate a temporal denoising algorithm to reduce the instability of the depth measurements provided by the Kinect over different distances.
2012
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
978-1-4673-5152-2
Kinect depth data
Microsoft Kinect
depth measurement
temporal denoising
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/175920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact