A new fabrication process for three-terminal superconducting devices consisting of two Josephson junctions in a stacked configuration is reported. The process is based on the deposition of the whole Nb/AlxOy/Nb-Al/AlxOy/Nb multilayer on a Si crystalline wafer without any vacuum breaking. Lift-off techniques, anodization processes and a SiO film deposition have been adopted for patterning and insulating the two tunnel stacked junctions. Devices have been characterized in terms of current-voltage (I-V) curves and Josephson critical current vs. the externally applied magnetic field. They show high quality factors (V-m values up to 65 mV at 4.2 K), and good current uniformity.

Whole-wafer fabrication process for three-terminal double stacked tunnel junctions

2001

Abstract

A new fabrication process for three-terminal superconducting devices consisting of two Josephson junctions in a stacked configuration is reported. The process is based on the deposition of the whole Nb/AlxOy/Nb-Al/AlxOy/Nb multilayer on a Si crystalline wafer without any vacuum breaking. Lift-off techniques, anodization processes and a SiO film deposition have been adopted for patterning and insulating the two tunnel stacked junctions. Devices have been characterized in terms of current-voltage (I-V) curves and Josephson critical current vs. the externally applied magnetic field. They show high quality factors (V-m values up to 65 mV at 4.2 K), and good current uniformity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/176322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact