The structure and the in vitro behavior of liposomes filled with the cytotoxic drug doxorubicin (Doxo) and functionalized on the external surface with a branched moiety containing four copies of the 8-13 neurotensin (NT) peptide is reported. The new functionalized liposomes, DOPC-NT?Lys(C??)?, are obtained by co-aggregation of the DOPC phospholipid with a new synthetic amphiphilic molecule, NT? Lys(C??)?, which contains a lysine scaffold derivatized with a lipophilic moiety and a tetrabranched hydrophilic peptide, NT8-13, a neurotensin peptide fragment well known for its ability to mimic the neurotensin peptide in receptor binding ability. Dynamic light scattering measurements indicate a value for the hydrodynamic radius (RH) of 88.3±4.4 nm. The selective internalization and cytotoxicity of DOPC-NT? Lys(C??)? liposomes containing Doxo, as compared to pure DOPC liposomes, were tested in HT29 human colon adenocarcinoma and TE671 human rhabdomyosarcoma cells, both of which express neurotensin receptors. Peptide-functionalized liposomes show a clear advantage in comparison to pure DOPC liposomes with regard to drug internalization in both HT29 and TE671 tumor cells: FACS analysis indicates an increase in fluorescence signal of the NT?-liposomes, compared to the DOPC pure analogues, in both cell lines; cytotoxicity of DOPC-NT? Lys(C??)?-Doxo liposomes is increased four-fold with respect to DOPC-Doxo liposomes in both HT29 and TE671 cell lines. These effects could to be ascribed to the higher rate of internalization for DOPC-NT? Lys(C??)?-Doxo liposomes, due to stronger binding driven by a lower dissociation constant of the NT?-liposomes that bind the membrane onto a specific protein, in contrast to DOPC liposomes, which approach the plasma membrane unselectively.
Target-selective drug delivery through liposomes labeled with oligobranched neurotensin peptides
Tesauro D;Morelli G
2011
Abstract
The structure and the in vitro behavior of liposomes filled with the cytotoxic drug doxorubicin (Doxo) and functionalized on the external surface with a branched moiety containing four copies of the 8-13 neurotensin (NT) peptide is reported. The new functionalized liposomes, DOPC-NT?Lys(C??)?, are obtained by co-aggregation of the DOPC phospholipid with a new synthetic amphiphilic molecule, NT? Lys(C??)?, which contains a lysine scaffold derivatized with a lipophilic moiety and a tetrabranched hydrophilic peptide, NT8-13, a neurotensin peptide fragment well known for its ability to mimic the neurotensin peptide in receptor binding ability. Dynamic light scattering measurements indicate a value for the hydrodynamic radius (RH) of 88.3±4.4 nm. The selective internalization and cytotoxicity of DOPC-NT? Lys(C??)? liposomes containing Doxo, as compared to pure DOPC liposomes, were tested in HT29 human colon adenocarcinoma and TE671 human rhabdomyosarcoma cells, both of which express neurotensin receptors. Peptide-functionalized liposomes show a clear advantage in comparison to pure DOPC liposomes with regard to drug internalization in both HT29 and TE671 tumor cells: FACS analysis indicates an increase in fluorescence signal of the NT?-liposomes, compared to the DOPC pure analogues, in both cell lines; cytotoxicity of DOPC-NT? Lys(C??)?-Doxo liposomes is increased four-fold with respect to DOPC-Doxo liposomes in both HT29 and TE671 cell lines. These effects could to be ascribed to the higher rate of internalization for DOPC-NT? Lys(C??)?-Doxo liposomes, due to stronger binding driven by a lower dissociation constant of the NT?-liposomes that bind the membrane onto a specific protein, in contrast to DOPC liposomes, which approach the plasma membrane unselectively.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.