Several modified silicate glass samples activated with erbium ions at two different doping rates, namely 0.2 and 0.5 mol%, exhibit at room temperature a fine-structured emission band around 1.5 mm. The decay of luminescence from the Er3+4I13/2 metastable level is found to evolve according to a single-exponential law and a lifetime as long as 14.2 ms is measured from the glass with the lower erbium concentration. An estimation of the corresponding radiative lifetime, ?rad, is achieved on the basis of various theoretical models. Internal gain curves resulting from absorption and stimulated emission cross sections are also shown. A 75% quantum efficiency is deduced for the less Er3+ concentrated glass, which is nearly the highest one obtained from silica based doped-glasses.

High quantum efficiency at 1.54 µm in erbium-activated modified silica glass

A Chiasera;M Ferrari;
2004

Abstract

Several modified silicate glass samples activated with erbium ions at two different doping rates, namely 0.2 and 0.5 mol%, exhibit at room temperature a fine-structured emission band around 1.5 mm. The decay of luminescence from the Er3+4I13/2 metastable level is found to evolve according to a single-exponential law and a lifetime as long as 14.2 ms is measured from the glass with the lower erbium concentration. An estimation of the corresponding radiative lifetime, ?rad, is achieved on the basis of various theoretical models. Internal gain curves resulting from absorption and stimulated emission cross sections are also shown. A 75% quantum efficiency is deduced for the less Er3+ concentrated glass, which is nearly the highest one obtained from silica based doped-glasses.
2004
Istituto di fotonica e nanotecnologie - IFN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/17666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact