Recent studies using low-resolution satellite time series show that the Sahelian belt of West Africa is witnessing an increase in vegetation cover/biomass, called re-greening. However, detailed information on local processing and changes is rare or lacking. A multi-temporal set of Landsat images was used to produce land-cover maps for the years 2000 and 2007 in a semi-arid region of Niger, where an anomalous vegetation trend was previously detected. Several supervised classification approaches were tested: spectral classification of single Landsat data, temporal classification of normalized difference vegetation index time series from Landsat images, and two-step classification integrating both these approaches. The accuracy of the land-cover maps obtained ranges between 80% and 90% overall for the two-step classification approach. Comparison of the maps between the two years indicates a stable semi-arid region, where some change in hot spots exists despite a generally constant level of rainfall in the area during this period. In particular, the Dallol Bosso fossil valley highlights an increase in cultivated land, while a decrease in herbaceous vegetation was observed outside the valley where rangeland is the predominant natural landscape

Land-use and land-cover change detection in a semi-arid area of Niger using multi-temporal analysis of Landsat images

Nutini F;Boschetti M;PA Brivio;M Antoninetti
2013

Abstract

Recent studies using low-resolution satellite time series show that the Sahelian belt of West Africa is witnessing an increase in vegetation cover/biomass, called re-greening. However, detailed information on local processing and changes is rare or lacking. A multi-temporal set of Landsat images was used to produce land-cover maps for the years 2000 and 2007 in a semi-arid region of Niger, where an anomalous vegetation trend was previously detected. Several supervised classification approaches were tested: spectral classification of single Landsat data, temporal classification of normalized difference vegetation index time series from Landsat images, and two-step classification integrating both these approaches. The accuracy of the land-cover maps obtained ranges between 80% and 90% overall for the two-step classification approach. Comparison of the maps between the two years indicates a stable semi-arid region, where some change in hot spots exists despite a generally constant level of rainfall in the area during this period. In particular, the Dallol Bosso fossil valley highlights an increase in cultivated land, while a decrease in herbaceous vegetation was observed outside the valley where rangeland is the predominant natural landscape
2013
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Land-cover
land-use change
multitemporal Landsat
Niger
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/176730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 41
social impact