Electrical characteristics of fully self-aligned gate overlapped lightly doped drain (FSA-GOLDD) polysilicon thin-film transistors (TFTs), fabricated with a spacer technology and providing submicron (0.35 m) LDD regions, have been analyzed. Device characteristics show negligible series resistance of the LDD region while effective drain field relief has been demonstrated by a reduced kink effect and off-current, if compared to conventional self-aligned (SA) devices. Short channel effects are also mitigated by the LDD region, while substantial reduction in the hot-carrier induced instability is found, when compared with conventional SA devices.

Reduction of Short Channel Effects and Hot Carrier Induced Instability in Fully Self-Aligned Gate Overlapped Lightly Doped Drain Polysilicon TFTs

Valletta A;Maiolo L;Mariucci L;Pecora A;Rapisarda M;Fortunato G;
2012

Abstract

Electrical characteristics of fully self-aligned gate overlapped lightly doped drain (FSA-GOLDD) polysilicon thin-film transistors (TFTs), fabricated with a spacer technology and providing submicron (0.35 m) LDD regions, have been analyzed. Device characteristics show negligible series resistance of the LDD region while effective drain field relief has been demonstrated by a reduced kink effect and off-current, if compared to conventional self-aligned (SA) devices. Short channel effects are also mitigated by the LDD region, while substantial reduction in the hot-carrier induced instability is found, when compared with conventional SA devices.
2012
Istituto per la Microelettronica e Microsistemi - IMM
THIN-FILM TRANSISTORS
EMITTING DIODE
PIXEL CIRCUIT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/177534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact