We present the characterization of supersonic cluster beam deposition as a viable technique for the synthesis of nanostructured materials. Stable and intense cluster beams can be obtained with a pulsed microplasma cluster source. This technique has been applied to produce TiNi nanostructured thin films on various substrates at room temperature. The morphology and the structure of the film are strongly influenced by the precursor clusters. Films characterized by crystallite sizes of a few tens of nanometers can be grown without recrystallization by thermal annealing. The stoichiometry of the original TiNi alloy is maintained.
Supersonic cluster beam synthesis of nanophase materials
2000
Abstract
We present the characterization of supersonic cluster beam deposition as a viable technique for the synthesis of nanostructured materials. Stable and intense cluster beams can be obtained with a pulsed microplasma cluster source. This technique has been applied to produce TiNi nanostructured thin films on various substrates at room temperature. The morphology and the structure of the film are strongly influenced by the precursor clusters. Films characterized by crystallite sizes of a few tens of nanometers can be grown without recrystallization by thermal annealing. The stoichiometry of the original TiNi alloy is maintained.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


