An analytical expression for the SAW sensor gas response versus gas concentration (calibration curve) is deduced, at low gas concentrations, on using the perturbation approach. The calibration curve, the sensitivity (its slope) and the detection limit (threshold value) for a given gas and sorbent membrane, can be controlled by a proper choice of the substrate material and its crystallographic orientation. We show how this property takes place from the anisotropy of the SAW propagation on piezoelectric single crystals, allowing to change the partial contributions to the SAW response through mechanical displacements, coupling constant and temperature coefficient of velocity (TCV). The theoretical predictions are experimentally verified on devices implemented on different orientations of quartz and LiNbO3 substrates, using Pd, Pd:Ni and polyvinyl alcohol (PVA) as sorbent films and humid air as analyte. The lowest threshold value of RH (0.01%) and the highest sensitivity (49 ppm/%) are detected in the PVA/yz-LiNbO3 structure, whose sensitivity is about two orders of magnitude higher than that observed in uncoated LiNbO3

A study of SAW gas sensing versus gas concentration

C Caliendo;E Verona;
1999

Abstract

An analytical expression for the SAW sensor gas response versus gas concentration (calibration curve) is deduced, at low gas concentrations, on using the perturbation approach. The calibration curve, the sensitivity (its slope) and the detection limit (threshold value) for a given gas and sorbent membrane, can be controlled by a proper choice of the substrate material and its crystallographic orientation. We show how this property takes place from the anisotropy of the SAW propagation on piezoelectric single crystals, allowing to change the partial contributions to the SAW response through mechanical displacements, coupling constant and temperature coefficient of velocity (TCV). The theoretical predictions are experimentally verified on devices implemented on different orientations of quartz and LiNbO3 substrates, using Pd, Pd:Ni and polyvinyl alcohol (PVA) as sorbent films and humid air as analyte. The lowest threshold value of RH (0.01%) and the highest sensitivity (49 ppm/%) are detected in the PVA/yz-LiNbO3 structure, whose sensitivity is about two orders of magnitude higher than that observed in uncoated LiNbO3
1999
Istituto di Acustica e Sensoristica - IDASC - Sede Roma Tor Vergata
0-7803-5722-1
SAW
gas sensors
perturbation theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/178645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact