We present scanning tunneling microscopy and spectroscopy measurements of the charge-density wave state in 1T-TiSe2, Cu0.05TiSe2, and Cu0.06TiSe2 single crystals. Topography images at 4.2 K reveal that the charge density waves are present in all samples studied, although the amplitude of the charge modulation decreases with the Cu doping. Moreover, the chiral phase of the charge density wave is preserved also in Cu-doped samples. Tunneling spectroscopy shows that there is only a partial gap in the pure compound, with bands crossing the Fermi surface. In the Cu-doped samples, the system becomes more metallic due to the increase of the chemical potential.

Evolution of the charge density wave state in CuxTiSe2

R Di Capua;
2012

Abstract

We present scanning tunneling microscopy and spectroscopy measurements of the charge-density wave state in 1T-TiSe2, Cu0.05TiSe2, and Cu0.06TiSe2 single crystals. Topography images at 4.2 K reveal that the charge density waves are present in all samples studied, although the amplitude of the charge modulation decreases with the Cu doping. Moreover, the chiral phase of the charge density wave is preserved also in Cu-doped samples. Tunneling spectroscopy shows that there is only a partial gap in the pure compound, with bands crossing the Fermi surface. In the Cu-doped samples, the system becomes more metallic due to the increase of the chemical potential.
2012
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/179715
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact