Pichia fermentans (strain DISAABA 726) is an effective biocontrol agent against Monilinia fructicola and Botrytis cinerea when inoculated in artificially wounded apple fruit but is an aggressive pathogen when inoculated on wounded peach fruit, causing severe fruit decay. Pichia fermentans grows as budding yeast on apple tissue and exhibits pseudohyphal growth on peach tissue, suggesting that dimorphism may be associated with pathogenicity. Two complementary suppressive subtractive hybridization (SSH) strategies, that is, rapid subtraction hybridization (RaSH) and PCR-based subtraction, were performed to identify genes differentially expressed by P. fermentans after 24-h growth on apple vs. peach fruit. Gene products that were more highly expressed on peach than on apple tissue, or vice versa, were sequenced and compared with available yeast genome sequence databases. Several of the genes more highly expressed, when P. fermentans was grown on peach, were related to stress response, glycolysis, amino acid metabolism, and alcoholic fermentation but surprisingly not to cell wall degrading enzymes such as pectinases or cellulases. The dual activity of P. fermentans as both a biocontrol agent and a pathogen emphasizes the need for a thorough risk analysis of potential antagonists to avoid unpredictable results that could negatively impact the safe use of postharvest biocontrol strategies.

Identification of differentially expressed genes associated with changes in the morphology of Pichia fermentans on apple and peach fruit

2012

Abstract

Pichia fermentans (strain DISAABA 726) is an effective biocontrol agent against Monilinia fructicola and Botrytis cinerea when inoculated in artificially wounded apple fruit but is an aggressive pathogen when inoculated on wounded peach fruit, causing severe fruit decay. Pichia fermentans grows as budding yeast on apple tissue and exhibits pseudohyphal growth on peach tissue, suggesting that dimorphism may be associated with pathogenicity. Two complementary suppressive subtractive hybridization (SSH) strategies, that is, rapid subtraction hybridization (RaSH) and PCR-based subtraction, were performed to identify genes differentially expressed by P. fermentans after 24-h growth on apple vs. peach fruit. Gene products that were more highly expressed on peach than on apple tissue, or vice versa, were sequenced and compared with available yeast genome sequence databases. Several of the genes more highly expressed, when P. fermentans was grown on peach, were related to stress response, glycolysis, amino acid metabolism, and alcoholic fermentation but surprisingly not to cell wall degrading enzymes such as pectinases or cellulases. The dual activity of P. fermentans as both a biocontrol agent and a pathogen emphasizes the need for a thorough risk analysis of potential antagonists to avoid unpredictable results that could negatively impact the safe use of postharvest biocontrol strategies.
2012
Istituto di Biofisica - IBF
biocontrol
subtractive hybridization
yeast pathogenicity
postharvest
environmental risk
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/179973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact