Hydrogen added to natural gas improves the process of combustion with the possibility to develop engines with higher performance and lower environmental impact. In this paper experimental and numerical analyses on a multi cylinder stoichiometric heavy duty engine, fuelled with natural gasehydrogen blends, are reported. Some constrains on hydrogen content and maximum load achievable have limited the scope of investigation. A specific modelling of the reference engine was developed to extend the study at full load condition and at higher hydrogen content. The results showed a higher combustion speed when hydrogen content in the fuel is increased. However, the positive effect of shorter combustion duration on thermal efficiency is mitigated by higher wall heat loss, due to higher combustion temperatures. Therefore lower CO2 emissions are due only to the substitution of natural gas with hydrogen, making crucial the way of hydrogen producing to have a benefit on well-to-wheel CO2 emissions.

Experimental and numerical study of hydrogen addition in a natural gas heavy duty engine for a bus vehicle

Luigi De Simio;Michele Gambino;Sabato Iannaccone
2013

Abstract

Hydrogen added to natural gas improves the process of combustion with the possibility to develop engines with higher performance and lower environmental impact. In this paper experimental and numerical analyses on a multi cylinder stoichiometric heavy duty engine, fuelled with natural gasehydrogen blends, are reported. Some constrains on hydrogen content and maximum load achievable have limited the scope of investigation. A specific modelling of the reference engine was developed to extend the study at full load condition and at higher hydrogen content. The results showed a higher combustion speed when hydrogen content in the fuel is increased. However, the positive effect of shorter combustion duration on thermal efficiency is mitigated by higher wall heat loss, due to higher combustion temperatures. Therefore lower CO2 emissions are due only to the substitution of natural gas with hydrogen, making crucial the way of hydrogen producing to have a benefit on well-to-wheel CO2 emissions.
2013
Istituto Motori - IM - Sede Napoli
Natural gas
Hydrogen
Combustion
Engine
Efficiency
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/181524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact